Null geodesics, local CFT operators, and AdS/CFT for subregions
نویسندگان
چکیده
منابع مشابه
Nonlinear Gravitons, Null Geodesics, and Holomorphic Disks
We develop a global twistor correspondence for pseudo-Riemannian conformal structures of signature (++−−) with self-dual Weyl curvature. Near the conformal class of the standard indefinite product metric on S2 × S2, there is an infinitedimensional moduli space of such conformal structures, and each of these has the surprising global property that its null geodesics are all periodic. Each such c...
متن کاملTrapping of waves and null geodesics for rotating black holes
We present dynamical properties of linear waves and null geodesics valid for Kerr and Kerr–de Sitter black holes and their stationary perturbations. The two are intimately linked by the geometric optics approximation. For the nullgeodesic flow the key property is the r-normal hyperbolicity of the trapped set and for linear waves it is the distribution of quasi-normal modes: the exact quantizati...
متن کاملNull Geodesics in Five-Dimensional Manifolds
We analyze a class of 5D non-compact warped-product spaces characterized by metrics that depend on the extra coordinate via a conformal factor. Our model is closely related to the so-called canonical coordinate gauge of Mashhoon et al. We confirm that if the 5D manifold in our model is Ricciflat, then there is an induced cosmological constant in the 4D sub-manifold. We derive the general form o...
متن کاملNull Geodesics in Brane World Universe
We study null bulk geodesic motion in the brane world cosmology in the RS2 scenario and in the static universe in the bulk of the charged topological AdS black hole. We obtain equations describing the null bulk geodesic motion as observed in one lower dimensions. We find that the null geodesic motion in the bulk of the brane world cosmology in the RS2 scenario is observed to be under the additi...
متن کاملNull-geodesics in Complex Conformal Manifolds and the Lebrun Correspondence
In the complex-Riemannian framework we show that a conformal manifold containing a compact, simply-connected, null-geodesic is conformally flat. In dimension 3 we use the LeBrun correspondence, that views a conformal 3-manifold as the conformal infinity of a selfdual four-manifolds. We also find a relation between the conformal invariants of the conformal infinity and its ambient.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review D
سال: 2013
ISSN: 1550-7998,1550-2368
DOI: 10.1103/physrevd.88.064057